Analog Electronic

ENEE236

BJT AC Analysis
Chapter 5

Small Signal ac Equivalent Circuit

$>$ In order to simplify the analysis, we replace the Transistor by an equivalent circuit (model)
> An AC model represents the AC characteristics of the transistor.
> A model uses circuit elements that approximate the behavior of the transistor.
> There are two models commonly used in small signal AC analysis of a transistor:

- r_{e} model
- Hybrid equivalent model

Modeling Two-Port Networks

$>$ Two-port parameters can be determined for a given network.
$>$ Additionally, two-port parameters might be specified for a certain device by the manufacturer (such as h-parameter values for a transistor).
$>$ How are these parameters used?
$>$ They are used to form a circuit model for the device or circuit. A circuit model is developed using the two-port parameter equations.

Two-port networks

> Suppose that a network N has two ports as shown below. How could it be represented or modeled?
$>$ A common way to represent such a network is to use one of 6 possible two-port networks.
$>$ These networks are circuits that are based on one of 6 possible sets of two-port equations. These equations are simply different combinations of two equations that relate the variables V_{1}, V_{2}, I_{1}, and I_{2} to one another. The coefficients in these equations are referred to as two-port parameters.

ENEE234 - Circuit Analysis

Note that $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{~V}_{1}$, and V_{2} are labeled as shown by convention. Often there is a common negative terminal between the input and the output so the figure above could be redrawn as:

ENEE236

Development of the h-parameter model:

 One possible circuit model could be developed by treating one of the two-port parameter equations as a KVL equation and the other as a KCL equation (illustrate). This results in the following circuit.h - parameter equations:
$\mathrm{V}_{1}=\mathrm{h}_{11} \cdot \mathrm{I}_{1}+\mathrm{h}_{12} \cdot \mathrm{~V}_{2}$ $\mathrm{I}_{2}=\mathrm{h}_{21} \cdot \mathrm{I}_{1}+\mathrm{h}_{22} \cdot \mathrm{~V}_{2}$

$\mathrm{h}_{11}=\left.\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}\right|_{\mathrm{V}_{2}=0}$

$$
h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0}
$$

$\mathrm{h}_{21}=\left.\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right|_{\mathrm{V}_{2}=0}$

$$
\mathrm{h}_{22}=\left.\frac{\mathrm{I}_{2}}{\mathrm{~V}_{2}}\right|_{\mathrm{I}_{1}=0}
$$

ENEE236

Development of the h-parameter model of BJT:

For A BJT the equivalent h parameter model can be described by the following equations:

$$
\begin{aligned}
& \hline \mathrm{h} \text { - parameter equations }: \\
& \mathrm{V}_{1}=\mathrm{h}_{\mathrm{i}} \cdot \mathrm{I}_{1}+\mathrm{h}_{\mathrm{r}} \cdot \mathrm{~V}_{2} \\
& \mathrm{I}_{2}=\mathrm{h}_{\mathrm{f}} \cdot \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \cdot \mathrm{~V}_{2} \\
& \hline
\end{aligned}
$$

ENEE236
Summary:
Note: This page is for information only

y - parameter equations :
$\mathbf{I}_{1}=\mathbf{y}_{11} \cdot \mathbf{V}_{1}+\mathbf{y}_{12} \cdot \mathbf{V}_{2}$
$\mathbf{I}_{2}=\mathbf{y}_{21} \cdot \mathbf{V}_{1}+\mathbf{y}_{22} \cdot \mathbf{V}_{2}$

h - parameter equations $:$
$\mathrm{V}_{1}=\mathrm{h}_{11} \cdot \mathrm{I}_{1}+\mathrm{h}_{12} \cdot \mathrm{~V}_{2}$
$\mathrm{I}_{2}=\mathrm{h}_{21} \cdot \mathrm{I}_{1}+\mathrm{h}_{22} \cdot \mathrm{~V}_{2}$
0

BJT Configurations

- Common Emitter
- Common Base
- Common Collector

Terminated Two port network Includes source and load

Common Emitter Configuration

(inverting configuration, provides voltage and current gain)

Typical Data sheet parameter values
$h_{i e} \approx 1600 \Omega$
$h_{r e} \approx 0.0002$
$h_{f e} \approx 80$
$h_{o e} \approx 20.10^{-6}$ Siemens
h - parameter equations:
$\mathrm{V}_{\mathrm{bc}}=\mathrm{h}_{\mathrm{ic}} \cdot \mathrm{I}_{\mathrm{b}}+\mathrm{h}_{\mathrm{re}} \cdot \mathrm{V}_{\mathrm{ce}}$
Detailed Model $\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fe}} \cdot \mathrm{I}_{\mathrm{b}}+\mathrm{h}_{\mathrm{oe}} \cdot \mathrm{V}_{\mathrm{ce}}$

E
Simplified Model

Common Emitter and Common Collector Configuration

Value of hie

Base Emitter is a pn junction similar to a diode hie is the dynamic resistance of the pn junction

In a diode:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{d}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{DQ}}} \Rightarrow \\
& \mathrm{~h}_{\mathrm{ie}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{BQ}}}=\frac{\mathrm{V}_{\mathrm{T}}}{\frac{\mathrm{I}_{\mathrm{CQ}}}{\mathrm{~h}_{\mathrm{fe}}}}=\frac{\mathrm{h}_{\mathrm{fe}} \mathrm{~V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{CQ}}} \\
& \mathrm{~h}_{\mathrm{fe}}=\beta \\
& \mathrm{V}_{\mathrm{T}}=25.69 \mathrm{mV} @ 25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{BQ}} \text { dc value of base current }
$$

$$
\mathrm{I}_{\mathrm{CQ}} \text { dc value of collector current }
$$

Common Collector

provides current gain and no voltage gain)

Same Model of Common Emitter will be used due to the similarities between them and for simplicity

Ac Output
from Emitter
side

Common-Base Configuration

h - parameter equations $:$
$\mathrm{V}_{\mathrm{eb}}=\mathrm{h}_{\mathrm{ib} b} \cdot \mathrm{I}_{\mathrm{e}}+\mathrm{h}_{\mathrm{rb}} \cdot \mathrm{V}_{\mathrm{cb}}$
$\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fb}} \cdot \mathrm{I}_{\mathrm{e}}+\mathrm{h}_{\mathrm{ob}} \cdot \mathrm{V}_{\mathrm{cb}}$

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ib}}=\left.\frac{\mathrm{V}_{\mathrm{EB}}}{\mathrm{I}_{\mathrm{E}}}\right|_{\mathrm{V}_{\mathrm{CB}}=0} \\
& \mathrm{~h}_{\mathrm{fb}}=\alpha=\left.\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}}\right|_{\mathrm{V}_{\mathrm{CB}}=0}
\end{aligned}
$$

$$
\begin{aligned}
& h_{\mathrm{rb}}=\left.\frac{\mathrm{V}_{\mathrm{EB}}}{\mathrm{~V}_{\mathrm{CB}}}\right|_{\mathrm{I}_{\mathrm{E}}=0} \\
& \mathrm{~h}_{\mathrm{ob}}=\left.\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{CB}}}\right|_{\mathrm{I}_{\mathrm{E}}=0}
\end{aligned}
$$

Common-Base Configuration

Simplified Equivalent Circuit

Common-Base Configuration

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{EQ}}} \\
& \mathrm{~h}_{\mathrm{fb}}=\alpha \\
& \mathrm{V}_{\mathrm{T}}=25.69 \mathrm{mV} @ 25^{\circ} \mathrm{C} \\
& \mathrm{~h}_{\mathrm{ie}}>\mathrm{h}_{\mathrm{ib}}
\end{aligned}
$$

BJT Amplifier Analysis Example

BJT Amplifier Analysis

When Analyzing Amplifier Circuits, we usually want to find some or all of the following quantities:

1) $A v=V o / V i$, small signal voltage gain
2) $A \mathrm{i}=\mathrm{io} / \mathrm{ii}$, small signal current gain
3) $\mathrm{Zi} \quad$ Input Impedance
4) Zo Output Impedance

BJT Amplifier Analysis

Solution: (with Rs=0)
We draw the ac small signal equivalent circuit
Capacitors ==> replaced by short circuit DC sources are killed ,

$h_{i b}=\frac{V_{T}}{I_{E Q}}$

$$
\mathrm{h}_{\mathrm{fb}}=\alpha \cong 1
$$

I_{EQ} must be calculated from DC analysis

DC Analysis

DC Equivalent Circuit:
-Cap ==> open
-Kill ac sources ==>

$$
\begin{gathered}
10=5 \mathrm{k} \Omega . \mathbf{I}_{\mathrm{EQ}}+\mathrm{V}_{\mathrm{EB}} \\
\mathbf{I}_{\mathrm{EQ}}=\frac{\mathbf{1 O}-\mathbf{O} .7}{5 \mathrm{k} \Omega}=\mathbf{1 . 8 6} \mathbf{~ m A} \\
\mathrm{h}_{\mathrm{ib}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{EQ}}}=\frac{25.69 \mathrm{mV}}{1.86 \mathrm{~mA}}=13.98 \Omega
\end{gathered}
$$

Ac ss equivalent circuit

$$
\begin{aligned}
& \text { 1) } \mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}} \\
& v_{o}=i_{o} .4 \mathrm{k} \Omega \\
& i_{o}=h_{f \beta}, i_{e} \\
& i_{e}=\frac{v_{i}}{h_{i b}} \\
& \mathrm{~A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}}=\frac{v_{o}}{i_{o}} \cdot \frac{i_{e}}{i_{e}} \cdot \frac{i_{e}}{v_{i}} \\
& \mathrm{~A}_{\mathrm{v}}=(4 \mathrm{k} \Omega) \cdot\left(h_{f}\right) \cdot\left(\frac{1}{h_{i b}}\right) \\
& =(4 \mathrm{k} \Omega) .(1) \cdot\left(\frac{1}{13.98}\right)=286>1
\end{aligned}
$$

Current Gain Ai

$$
\begin{gathered}
\text { 2) } \mathrm{A}_{\mathrm{i}}=\frac{i_{o}}{i_{i}} \\
i_{o}=h_{f b} \cdot i_{e} \\
i_{e}=i_{i} \frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+h_{i b}}
\end{gathered}
$$

$$
\Rightarrow \mathrm{A}_{\mathrm{i}}=\frac{i_{o}}{i_{i}}=\frac{i_{o}}{i_{e}} \cdot \frac{i_{e}}{i_{i}}
$$

$$
\Rightarrow \mathrm{A}_{\mathrm{i}}=\left(h_{f b}\right)\left(\frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+h_{i b}}\right)
$$

$$
=(1)\left(\frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+13.98}\right)<1
$$

Zi \& Zo

3) Input Impedance
$Z_{\mathrm{i}}=\left(h_{i b} / / 5 \mathrm{k} \Omega\right)=\left(\frac{h_{i b} \cdot 5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+h_{i b}}\right)$
4) Output Impedance
$\left.Z_{o}\right|_{\text {all independant sources killed (i.e. Vi=0 or short) }}=4 \mathrm{k} \Omega$

With Presence of Rs

with R_{s}
$i_{\mathrm{i}}=\frac{v_{\mathrm{i}}}{Z_{\mathrm{i}}+R_{s}}$

For Rs $=50 \Omega$

$\mathrm{A}_{\mathrm{v}}=62.5$
For Rs $=10 \mathrm{k} \Omega$
$\mathrm{A}_{\mathrm{v}}=0.4$

Example: Common Emitter (CE)

1) From DC Analysis, we find Q - point and value of
$\mathrm{h}_{\mathrm{ie}}=\frac{V_{T}}{I_{B Q}}$

as seen from the base
$V_{T H}=\frac{10 \mathrm{k} \Omega}{10 \mathrm{k} \Omega+50 \mathrm{k} \Omega} .24 \mathrm{~V}=4 \mathrm{~V}$
$\mathrm{R}_{\text {тн }}=10 \mathrm{k} \Omega \Omega / / 5 \mathrm{k} \Omega=8.33 \mathrm{k} \Omega$

$$
\frac{R_{T H}}{\beta+1}
$$

$$
\begin{aligned}
& 4=8.33 \mathrm{k} \Omega . \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}+2.2 \mathrm{k} \Omega . \mathrm{I}_{\mathrm{E}} \\
& \text { But, } \\
& \text { Solve for } \mathrm{I}_{\mathrm{E}}=\frac{4-0.7}{\frac{8.33 \mathrm{k} \Omega}{(1+50)}+2.2 \mathrm{k} \Omega}=1.4 \mathrm{~mA} \\
& \mathrm{~h}_{\mathrm{ie}}=\frac{V_{T}}{I_{B Q}}=\frac{25.69 \mathrm{mV}}{\frac{1.4 \mathrm{~mA}}{51}}=928 \Omega
\end{aligned}
$$

Here we have base reflected to emitter
$I_{B} \Rightarrow I_{E}=(\beta+1) I_{B}$
$R_{B} \Rightarrow \frac{R_{B}}{\beta+1}$

AC small signal Equivalent Circuit

$$
\begin{aligned}
& \text { 1) } \mathrm{A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}} \\
& \mathrm{~A}_{\mathrm{v}}=\frac{v_{o}}{v_{i}}=\frac{v_{o}}{i_{b}} \cdot \frac{i_{b}}{v_{i}} \\
& v_{o}=-h_{f e} i_{b} .\left(\mathrm{R}_{3} / / \mathrm{R}_{7}\right) \\
& =-h_{f e} \cdot\left(\mathrm{R}_{3} / / \mathrm{R}_{7}\right) \cdot\left(\frac{1}{h_{i e}}\right) \\
& i_{b}=\frac{v_{i}}{h_{i e}} \\
& =-50 .(3.8 \mathrm{k} \Omega / / 1 \mathrm{k} \Omega) \cdot\left(\frac{1}{928 \Omega}\right)=-42.7
\end{aligned}
$$

AC small signal Equivalent Circuit

$$
\text { 2) } \begin{aligned}
\mathrm{Z}_{\mathrm{I}} & =\mathrm{R}_{\mathrm{TH}} / / \mathrm{h}_{\mathrm{ie}} \\
& =8.33 \mathrm{k} \Omega / / 928 \Omega
\end{aligned}
$$

only elements to the right of arrow are considered according to the given direction of the arrow
3) $\left.Z_{\mathrm{o}}\right|_{\text {all independant sources } \text { killed (i.e. Vi=0 or short) }}=3.8 \mathrm{k} \Omega$
here $\mathrm{h}_{\mathrm{fe}} \cdot \mathrm{i}_{\mathrm{b}}=0$ since $\mathrm{i}_{\mathrm{b}}=0(\mathrm{vi}=0 \quad-$ killed $)$

AC small signal Equivalent Circuit

$$
\begin{aligned}
& i_{o}=-h_{f e} i_{b}\left(\frac{R_{3}}{R_{3}+R_{7}}\right) \\
& i_{b}=\left(i_{i}\right)\left(\frac{R_{I} / / R_{T H}}{\left(R_{I} / / R_{T H}\right)+h_{i e}}\right) \\
& \mathrm{A}_{\mathrm{i}}=\frac{i_{o}}{i_{i}}=\frac{i_{o}}{i_{b}} \cdot \frac{i_{b}}{i_{i}}=-h_{f e}\left(\frac{R_{3}}{R_{3}+R_{7}}\right) \cdot\left(\frac{R_{I} / / R_{T H}}{\left(R_{I} / / R_{T H}\right)+h_{i e}}\right)=-33
\end{aligned}
$$

Impedance Reflection

(

base equivalent circuit

(reflection from emitter to base)
Here we must change i_{e} to i_{b} which requires division by $\left(h_{f e}+1\right)$, but voltage must remain the same and thus the resistance must be multiplied by the same factor $\left(h_{f e}+1\right)$

Emitter equivalent circuit

(reflection from base to emitter)
Here we must change i_{b} to i_{e} which requires multiplication by $\left(h_{f e}+1\right)$, but voltage must remain the same and thus the resistance must be divided by the same factor $\left(h_{f e}+1\right)$

Collector Equivalent Circuit

Note: there is no reflection from emitter to collector or vise vesra since the ie and ic are almost the same

Common Collector Amplifier

AC small signal Equivalent Circuit

